Agroforestry-based interventions and innovations to address soil nutrition and soil health issues

B. I. Nyoka

Defining Agroforestry

A dynamic, ecologically based, natural resource management system that, through integration of trees on farms and in the agricultural landscape, diversifies and sustains production and builds social institutions.

Tree-Based Soil Health Management Technologies/practices

Short Rotation- Non-coppicing shrubs

- Relay intercropping Fallows (Tephrosia, Pigeon pea, Sesbania)
- Improved Rotational Fallows (Tephrosia, Pigeon pea, Sesbania)

Coppicing Shrubs

• Gliricidia, Leucaena spp. Acaciella

High or Full canopy Species

- Faidherbia albida (planted or FMNR)
- Multi-Tree Species (FMNR) ?

Annual soil nutrient depletion in selected Southern African countries

Country	Nutrient depletion (kg ha/yr)		
	N	Р	K
Malawi	-48	- 7	- 37
Mozambique	-23	-4	-19
Zambia	-13	-1	-12
Zimbabwe	-20	-1	-21
Tanzania	-38	-6	-25

Soil Organic Carbon depletion

Maintenance of soil nutrients and health through fertilization

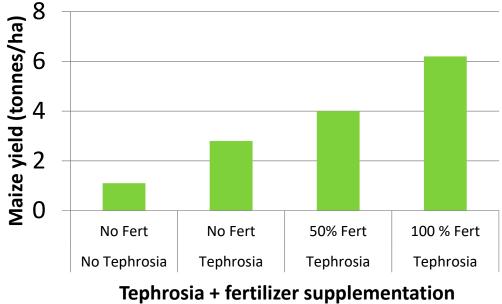
Inorganic fertilisers

Composts

Farmyard manure

Green Manure crops e.g. Crotalaria mukuna

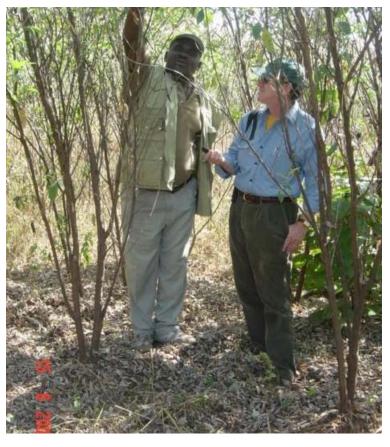
Leguminous fertiliser trees


Fertiliser Trees for enhancing Soil Fertility and Soil health

- Non-coppicing shrubs: e.g. Sesbania sesban, Pigeon pea, Tephrosia
- Coppicing Trees: e.g. Gliricidia sepium, Leucaena spp., Acaciella angustissima
- Full Canopy Trees: Faidherbia albida (musangu)

Improved Relay Fallows are established annually.

Trees are planted within 2 weeks of planting maize

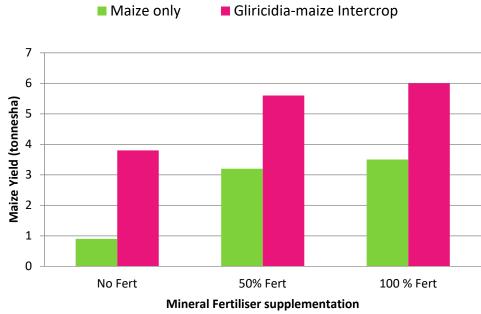

An annual relay of Sesbania stand in late September

An annual relay fallow of Tephrosia following a failed maize crop in Kasungu

Improved 2-year rotational fallows produce more biomass (litter & green leaf)

Application is limited to those farmers with large farmlands

Coppicing Shrubs.


- Trees can be intercropped or planted along contour bunds or field boundaries
- Trees can be maintained for up to 15 years

High Canopy Legume fertilizer tree interventions permit mechanization

Soil Rehabilitation Services by Fertiliser trees

- Improvement in soil Nutrient cycling
- Increased soil organic matter
- Improvement in soil biological properties
- Improvement in soil physical properties
- Carbon Sequestration and GHG mitigation

Evidence of changes in soil physical properties from fertiliser trees planted as a fallow compared to continuously cropped sole maize crop

Soil Property	Percentage (from)	Change (to)	
Bulk densityMg/m ³	-1.4	-9.2	
Aggregate stability (mm)	18.2	36.1	
Infitration rate (mm/hr)	27.6	600	
Time to run off (minutes)	40.0	133.3	
Drainage (mm)	87.7	990	
Penetrometer resistance Mpa)	-9.4	-50	
Run off loss (%)	-63.2	-100	
Bulk density Mg/m ³	-1.4	-9.2	¥40
		Wor	ld estry

Source: Sileshi et al. (2014)

On-Farm validation

Fig. 6: 2017 Maize yield and yield components data collection process

Observed Challenges with Fertiliser Trees

Variability in green manure yields especially with annual relay fallows

- Site
- Year to Year


Site	2017/18	2018/19
Mzimba	0.5 to 1.1 t/ha	0.9 to 2.3 t/ha
Kasungu	0.7 to 1.5 t/ha	1.0 to 2.0 t/ha

Annual crops and fertilizer trees as organic sources & N fixed on smallholder farms in southern Africa by various legumes

Legume (Organic source)	N fixed (kg/ ha)	Leaf biomass (DM) production (kg/ha)
Cowpea (V. unguiculata)	28-47	???
Groundnut (A. hypogaea)	33	656
Pigeon pea (Cajanus cajan)	3-97	2,300
Acacia angustissima	122-210	4,760
Sesbania sesban	84	3,500
Gliricidia sepium	212	2,300
Tephrosia spp	157-280	3,070

Source: Mafongoya et al. 2006; Phiri et al., 2013

Thank You!

