

Market Access and Quality Upgrading: Evidence from Four Field Experiments

Tessa Bold¹, Selene Ghisolfi², Frances Nsonzi³, and Jakob Svensson¹

IIES (Stockholm University); 2) LEAP (Bocconi University);
 Department of Food Technology and Nutrition (Makerere University)

- Smallholder farmers in low-income countries produce output of low quality.
- Low quality limits the price they can command for their produce.
- Policy makers view quality upgrading as key to raising income and productivity.
- Yet, few farmers upgrade quality.
- Why?

This paper: questions

- Four <u>measurement</u> and <u>field experiments</u> among smallholder maize farmers in Uganda to shed light on the *impediments to quality upgrading* at the farm level and *study its potential impact*
 - 1. Quality at the farm gate?
 - Measurement
 - Observability
 - 2. Return to quality at the farm gate?
 - 3. Access to a market for high quality maize
 - will farmers respond by producing higher quality if offered access to a market where quality maize is paid a (market) premium (plus training on how to produce high quality)?
 - implications for farmer income and productivity of quality upgrading?
 - 4. Extension intervention only

This paper: methods

- Four <u>measurement</u> and <u>field experiments</u> among smallholder maize farmers in Uganda to shed light on the *impediments to quality upgrading* at the farm level and *study its potential impact*
 - 1. Quality at the farm gate?
 - laboratory tests and visual verifications
 - 2. Return to quality at the farm gate?
 - experimental variation in the quality of the maize sold by farmers
 - 3. Access to a market for high quality maize plus extension
 - CRCT aimed at emulating a situation where treated households gain access to an output market for quality maize plus training on how to produce high quality maize
 - follow farmers over seven seasons
 - 4. Extension only
 - CRCT training intervention

This paper: results

- Four <u>measurement</u> and <u>field experiments</u> among smallholder maize farmers in Uganda to shed light on the *impediments to quality upgrading* at the farm level and *study its potential impact*
 - 1. Quality at the farm gate?
 - low and partly observable
 - establishes that low quality problem begins at the farm gate
 - not a classical lemons problem
 - 2. Return to quality at the farm gate?
 - essentially zero
 - provides one explanation for why farmers are not investing in upgrading
 - 3. Access to a market for high quality maize (plus extension)?
 - Farmers upgrade quality
 - Income and productivity increases
 - 4. Extension only?
 - No effects

Related literature

- Relate to a number of recent papers on the implications of market (buyer) driven quality upgrading in a developing country setting
- Larger literature on agricultural productivity and technology adoption

Road map

- 1. Context: local markets for maize
- 2. Maize quality and verifiability of quality
- 3. Returns to quality experiment
 - intervention
 - results
- 4. Market for quality experiment
 - intervention
 - results
 - extension service experiment
- 5. Discussion
 - a case study of commercially buying, processing and selling quality maize
 - "macro" constraints

Context: farmers in Kibale district

• Kibale

★ Kampala

Context

- Average income (consumption): 0.80 USD per day (UBOS, 2019)
- Maize dominant cash crop sold in local markets
- Local market for maize \approx spot market
 - farmer and buyer agree right before the sale about y and p
 - farmer is paid directly and the transaction takes place at the farm gate
- Two types of buyers:
 - *local traders* (aggregators): buy from a smaller set of farmers and resell to commercial traders
 - households sold to local traders 80% of the times
 - *commercial buyers*: pass through the village with a truck (some have stores in trading centers)
 - half of the farmers sold to a commercial trader at least once during the last 5 seasons
 - sale to a commercial trader is associated with a higher price (8%)

Maize quality and verifiability of quality

- What is maize quality? Why does (should) it matter? To what extent is it observable?
- Quality ≈ economic value (nutrition, safe for consumption)
- Detailed test of quality requires lab equipment; seldom done at farm-gate
- At farm gate: visual inspection of bags of grain
- A bag of maize is of high quality if: *no non-grain substances* (stones, dirt, insects); *no defected kernels* (damaged, rotten, moldy); sufficiently large & *dry maize* kernels of the right color

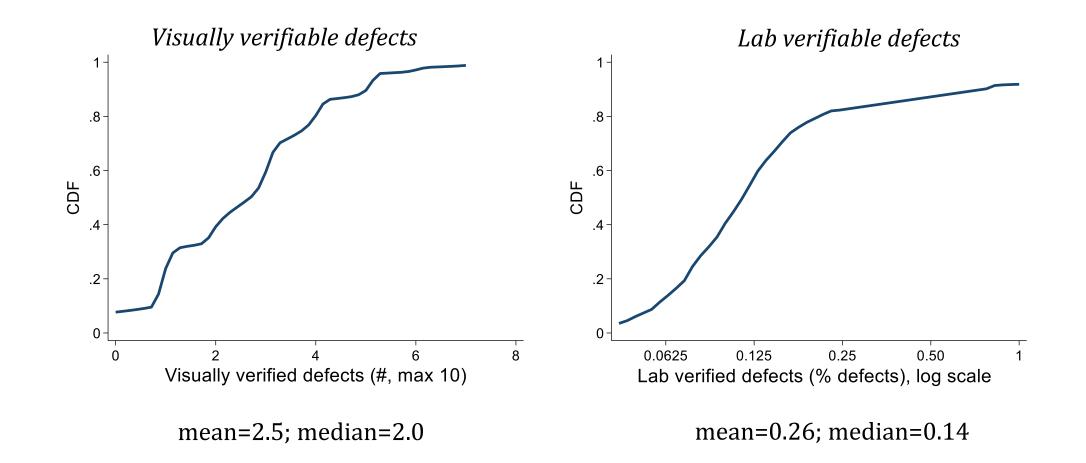
(non-grain substances

waste + increase processing costs

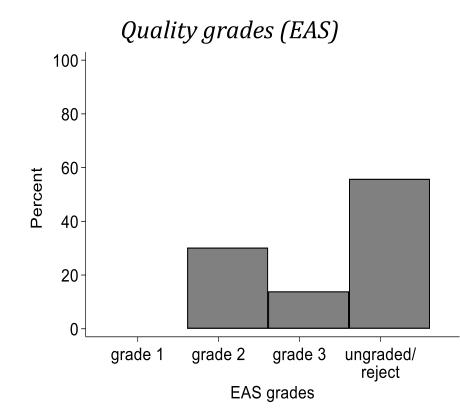
defected grains

high moisture

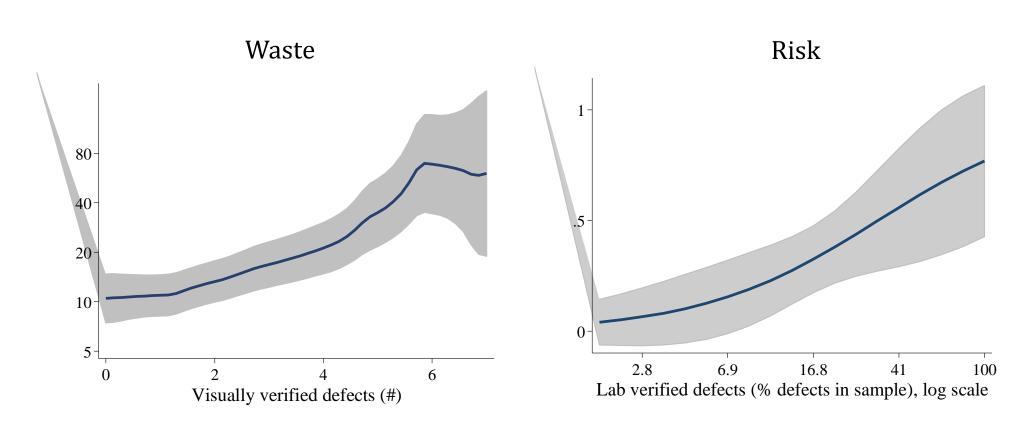
Maize quality and verifiability of quality


- What is maize quality? Why does (should) it matter? To what extent is it observable?
- Quality ≈ economic value (nutrition, safe for consumption)
- Detailed test of quality requires lab equipment; seldom done at farm-gate
- At farm gate: visual inspection of bags of grain
- A bag of maize is of high quality if: *no non-grain substances* (stones, dirt, insects); *no defected kernels* (damaged, rotten, moldy); sufficiently large & *dry maize* kernels of the right color

	(non–grain substances	⇒ indicates maize has been stored directly on the ground ⇒ raise risk of contamination (bacteria/fungi)
waste + increase processing costs	defected grains	\Rightarrow direct indicators of various infestation in the grain
	high moisture	\Rightarrow mold/fungi etc grow faster in wet maize


Maize quality and verifiability of quality

- The East African Quality Standard (EAS) classifies maize into three broad quality categories based on moisture level and amount of non-grain substances and defected grain: graded maize, under-grade maize and reject maize.
- Graded maize (quality maize) is further categorizes into three grades, with grade 1 having the most stringent thresholds for defects.
- Under-grade maize can in principle be sorted or treated for either grade 1, 2 or 3.


Maize quality: results and verifiability

Maize quality: results and verifiability

Maize quality: results and verifiability

- Farmers tend to sell maize of low and possibly unsafe quality
- Quality is at least partly observable

If the economic value of maize depends on its quality, why is the quality of maize sold by farmers so low?

• Neoclassical agriculture household model

 $\max \Pi = p(q(z))F(x, A) - c_x x - c_z z$

 $p(q) = \text{price for crop of quality } q; F(.) = \text{output}; \{x, z\} = \text{inputs}; \{c_x, c_z\} = \text{unit cost}; A = \text{land}$

FOCs:

 $pf'A - c_x = 0$ $p'q'f(.)A - c_z = 0$

If the economic value of maize depends on its quality, why is the quality of maize sold by farmers so low?

• Neoclassical agriculture household model

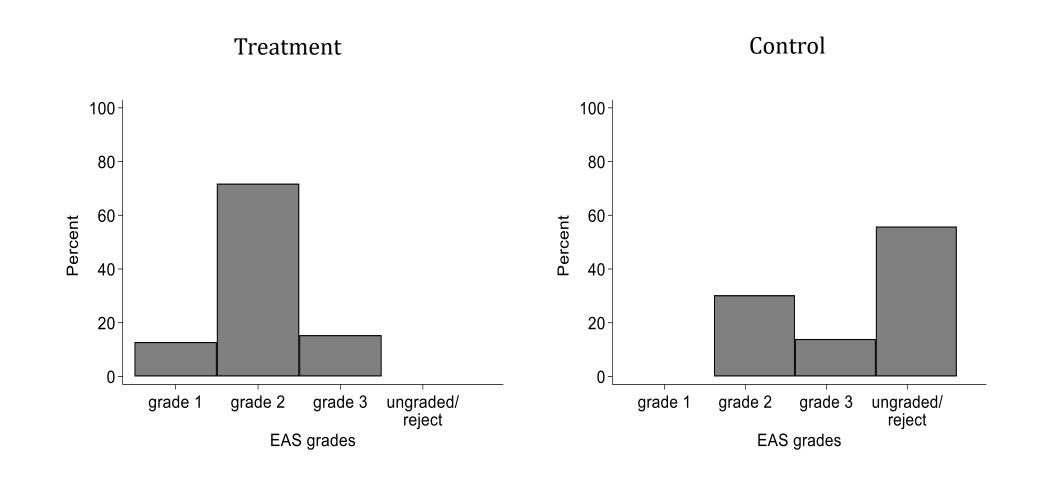
 $\max \Pi = p(q(z))F(x, A) - c_x x - c_z z$

p(q) = price for crop of quality q; F(.) = output; $\{x, z\} = \text{inputs}$; $\{c_x, c_z\} = \text{unit cost}$; A = land

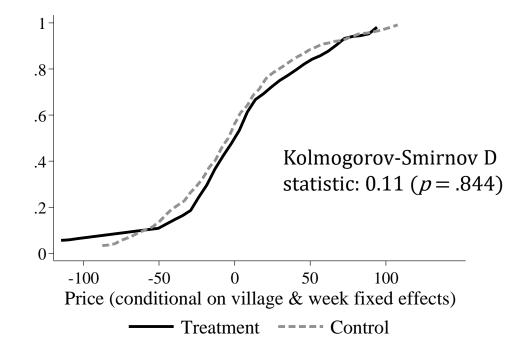
FOCs:

$$pf'A - c_x = 0$$
$$p'q'f(.)A - c_z = 0$$

- Prices/elasticity of *p* w.r.t. quality are key drivers of the decision to produce high quality maize
- Does the (local) market reward quality?


Returns to quality experiment: intervention

- Low quality at the farm gate is determined by a number of factors, several of which the farmer can directly influence through good agricultural practices
 - harvesting and shelling the cob without breaking or cracking the grains
 - not drying or storing cobs on the bare ground
 - drying, cleaning, and storing the grain correctly
- *Intervention*: a service package which included assistance with several key harvest and postharvest
 - services implemented by agricultural workers with access to portable agricultural machinery (dryer and a sheller/decobber); managed by staff from the research team.


Returns to quality experiment: intervention

- Enrolled 100 farmers; equally split btw treatment (T) and control (C); balanced at baseline
- Before harvest:
 - in T: households offered the free service package (100% compliance)
- When farmer ready to sell:
 - in T/C: visual inspection of quality; measure the weight of all bags; test for moisture; one (random) bag bought and tested in the lab
- After selling maize:
 - in T/C: information on sales volume and prices collected

Returns to quality: maize grade

Returns to quality experiment: results - prices

Outcome variable:	Price	Price
Specification	(1)	(2)
Model	OLS	IV
Treatment	2.95	
	(9.87)	
Visually verifiable defects		-0.15
		(.50)
Constant	530.5***	530.3***
	(14.0)	(14.1)
Observations	116	116
Households	94	94
R-squared	0.91	0.90

Market for quality experiment

- Farmers face weak incentives to invest in high quality
 - expect them to invest little
 - market would be dominated by low-quality maize
- Can farmers produce higher quality if quality is valued on the market?
- What are the implications for farmer profit and productivity of such quality upgrading?

Field experiment generating exogenous variation in access to a market for quality maize

Market for quality experiment

Neoclassical agriculture household model

 $\Pi = p(q(z))F(x,A) - c_x x - c_z z$

• <u>Intervention</u>: offer farmers in T an inverse demand schedule: $p^T = p(1 + I_{q \ge \bar{q}}\omega)$

 ω = quality premium; $I_{q \ge \bar{q}}$ = indicator function

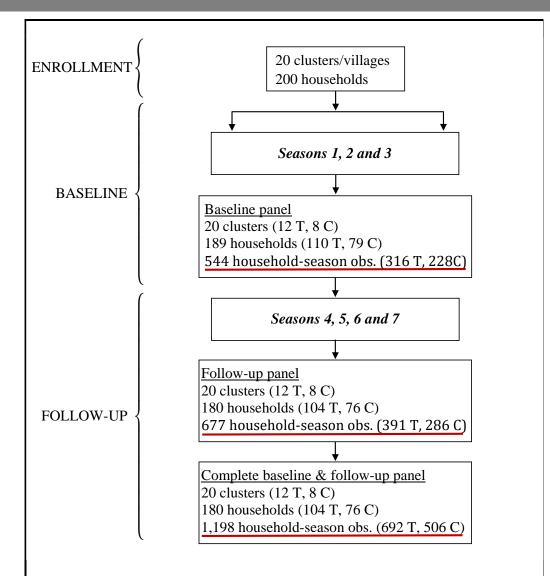
• <u>Intervention</u>: extension services to improve households' ability to produce higher quality maize (increasing their general knowledge of best-practice pre- and post-harvest agricultural activities)

Market for quality experiment: intervention

- Intervention: designed to emulate a market for high quality maize
- Collaborated with an agro-trading company:
 - committed to buy quality maize at a premium throughout the main buying season
 - company's agents used visual inspections of bags and mobile moisture meters to verify quality (and an unbiased weighting scale to measure weight)
 - bought only bags with quality maize
 - bags with waste or defected maize; maize with a moisture level above 13%, were rejected
- Research team:
 - randomly selected which villages the company should be active in
 - randomly selected households in the villages who should be invited to participate
 - determined the premium for quality, with the aim of reproducing a market equilibrium
- Intervention: *created experimental variation in access to a "market" (buyer) of quality maize (plus training on how to produce high quality maize)*

Market for quality experiment: premium

- What would one expect the premium to be if a market for quality maize existed?
- "minimum premium"⇒ farmer indifferent between upgrading or not.
- In equilibrium: *difference in the economic value of high and low quality maize is the difference in the amount of waste in the maize, valued at premium quality prices*
- premium \approx 5% above the market price at the trading centers
- "perceived premium" (Δ price local traders pay and the price for quality) $\approx 13\%$

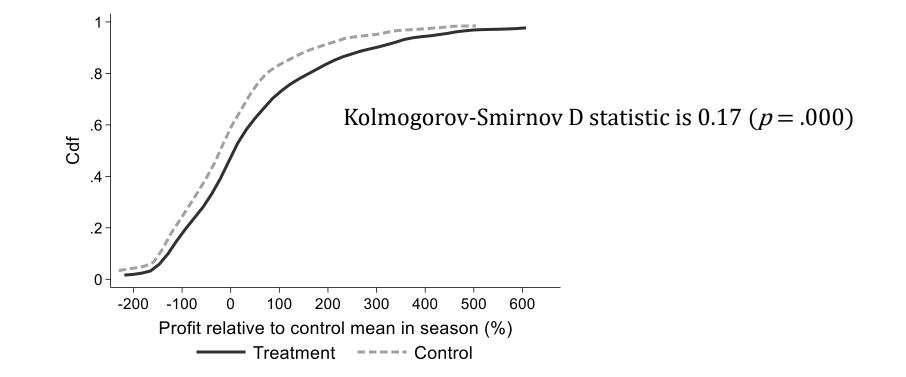


Market for quality experiment: trial design

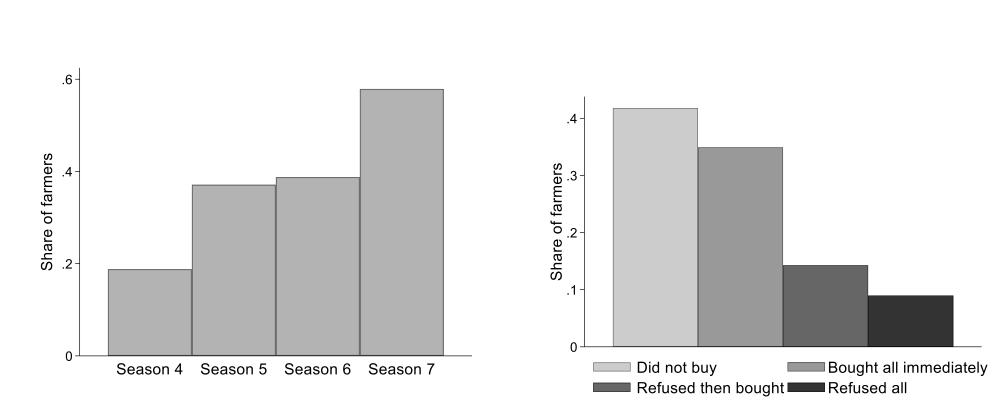
- Experimental design motivated by several features of the local market & intervention:
 - intervention = integrated value-chain, was complex and costly
 - spillovers/market effects
 - may take time before farmers decide to upgrade
 - large aggregate variation over season, impact =f (state) (Rosenzweig and Udry, 2000)
 - power to pick up reasonable treatment effects
- Clustered repeated measurement design:
 - restricted the number of clusters (20); 10 households per cluster
 - expanded on the number of waves, or seasons (7)

Market for quality experiment: trial design

Market for quality experiment: specification


• Main specification ANCOVA

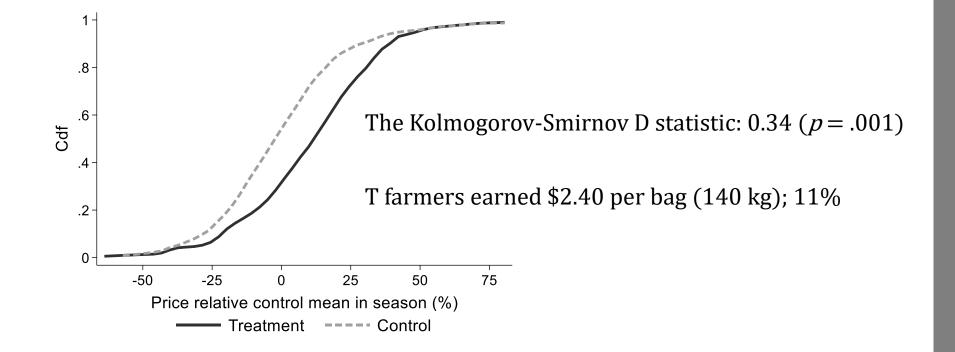
$$Y_{ijt} = \gamma TREAT_j + \sum_{4}^{7} \delta_t + \theta \overline{Y}_{ij,PRE} + \varepsilon_{ijt}$$


• **γ**: average treatment effect over the four follow-up rounds

Market for quality experiment: summary of the results

Quality upgrading and prices

Panel A. Farmers selling quality maize


Panel B. Buying pattern: quality maize

Quality upgrading and prices

	Ν	Mean			зg
	Treatment (1)	Quasi-control (2)	Difference (3)	Observations (4)	
Panel A. Maize quality					
Graded maize	0.89	0.30	0.593 [0.001]	86	
Grade 1 maize	0.07	0.00			
Grade 2 maize	0.52	0.20			
Grade 3 maize	0.30	0.10			
Panel B. Bounds on average maize quality					
Horowitz-Manski lower bound			0.190	116	
			[0.205]		
Lee lower bound			0.292	116	
			[0.027]		

TABLE 4—IMPACT ON MAIZE QUALITY

Quality upgrading was rewarded with a significantly higher price in treatment villages

• Neoclassical profit-maximization predicts that farmers will increase the intensity of input use across all inputs to increase the amount of (high-quality) output to be produced

	Expenses: seeds and fertilizer (1)	Expenses: all inputs (2)	Proper drying (3)	Sorting (4)	Winn- owing (5)	Preharvest expenses (6)	Postharvest expenses (7)	Postharvest expenses (labor) (8)
Panel A. Market access ex	periment							
Access to a market	2.37	4.04	0.24	0.14	0.15	16.2	5.92	5.86
for quality maize	(0.045)	(0.075)	(0.000)	(0.002)	(0.033)	(0.275)	(0.256)	(0.144)
	[0.049]	[0.089]	[0.001]	[0.001]	[0.047]	[0.296]	[0.272]	[0.153]
Observations	658	658	640	464	464	464	464	464
R^2	0.31	0.32	0.21	0.03	0.04	0.20	0.26	0.22
Mean control	3.72	13.14	0.35	0.13	0.19	53.76	30.39	15.63

TABLE 5—IMPACT ON INVESTMENT

• Neoclassical profit-maximization predicts that farmers will increase the intensity of input use across all inputs to increase the amount of (high-quality) output to be produced

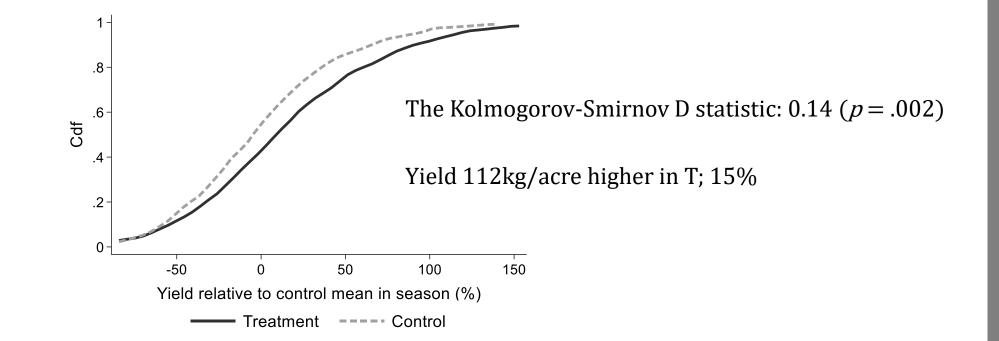
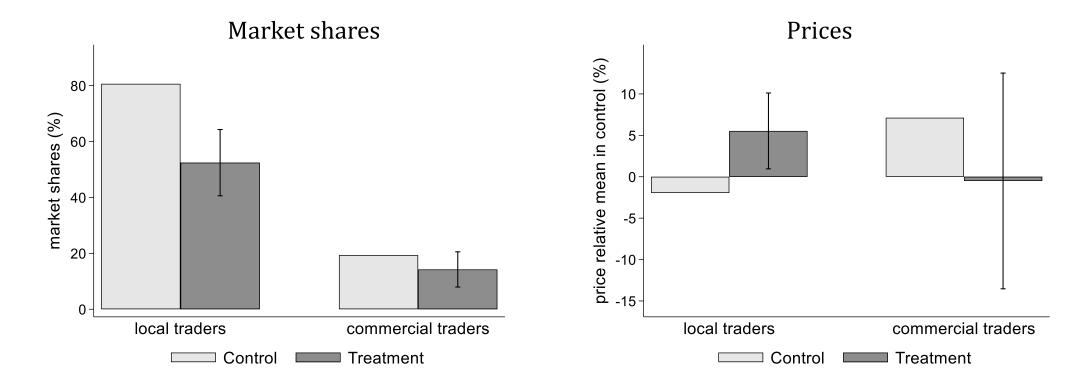

	Expenses: seeds and fertilizer (1)	Expenses: all inputs (2)	Proper drying (3)	Sorting (4)	Winn- owing (5)	Preharvest expenses (6)	Postharvest expenses (7)	Postharvest expenses (labor) (8)
Panel A. Market access e Access to a market for quality maize	experiment 2.37 (0.045) [0.049]	4.04 (0.075) (0.089)	0.24 (0.000) [0.001]	0.14 (0.002) [0.001]	0.15 (0.033) [0.047]	16.2 (0.275) [0.296]	5.92 (0.256) [0.272]	5.86 (0.144) [0.153]
Observations R^2 Mean control	658 0.31 3.72	658 0.32 13.14	640 0.21 0.35	464 0.03 0.13	464 0.04 0.19	464 0.20 53.76	464 0.26 30.39	464 0.22 15.63

TABLE 5—IMPACT ON INVESTMENT

• Neoclassical profit-maximization predicts that farmers will increase the intensity of input use across all inputs to increase the amount of (high-quality) output to be produced

	Expenses: seeds and fertilizer (1)	Expenses: all inputs (2)	Proper drying (3)	Sorting (4)	Winn- owing (5)	Preharvest expenses (6)	Postharvest expenses (7)	Postharvest expenses (labor) (8)
Panel A. Market access ex	periment							
Access to a market	2.37	4.04	0.24	0.14	0.15	16.2	5.92	5.86
for quality maize	(0.045)	(0.075)	(0.000)	(0.002)	(0.033)	(0.275)	(0.256)	(0.144)
	[0.049]	[0.089]	0.001	[0.001]	0.047	[0.296]	[0.272]	[0.153]
Observations	658	658	640	464	464	464	464	464
R^2	0.31	0.32	0.21	0.03	0.04	0.20	0.26	0.22
Mean control	3.72	13.14	0.35	0.13	0.19	53.76	30.39	15.63

TABLE 5—IMPACT ON INVESTMENT



• No significant effects on the agricultural production function and income/profit.

• Increased knowledge alone is not enough to improve income, but may well be an integral part of market experiment.

Market / spillover effects

• In the case of differentiated products (higher or lower quality maize), the entry of the new buyer likely led to an increase in competition, especially in smaller village markets

Market / spillover effects: causal effect on prices

	Other traders (1)	Local traders (2)	Commercial traders (3)
Panel A. Difference in market shares and prices			
Difference in market shares	-0.396	-0.325	-0.071
	[0.000]	[0.001]	[0.280]
Difference in prices versus control	0.045	0.061	-0.016
	[0.123]	[0.040]	[0.695]
Panel B. Difference in prices adjusting for selection			
Difference in prices versus control	0.066	0.078	0.021
	[0.071]	[0.052]	[0.680]

TABLE 7—IMPACT ON TRADER PRICES AND MARKET SHARES

Market / spillover effects: implications

- Selection
 - Positive selection on baseline price of selling to high quality trader.
- Higher average prices in T
 - Approximately one third of the increase in <u>average prices</u> in T vs. C is driven by the market/spillover effect
 - Evidence that price increase came about by incumbent traders raising prices rather than selective exit.
- Spillover/market effect reduced the relative price of higher quality maize in local markets
 - Mitigated the incentives for quality upgrading!

Discussion: intervention = a case study

- "Macro" constraints facing a vertically integrated domestic buyer in a LIC
 - (but not so much about the potential agency- and information problems that plague the market for (lower quality) maize)
- After factoring out all evaluation costs, the agro trading company broke even in 2 of 4 seasons

Discussion: a case study

- Three structural features of the product and the economy constrained the company's ability to increase revenues
 - takes time to build a reputation for high quality maize flour in domestic markets
 - price elasticity of quality among large sections of domestic buyers is low
 - large (fixed) costs to enter the export market where premium for quality is high

Discussion: a case study

- Other features of the business model raised costs
 - company's business model was not one of pure profit-maximization
 - buy maize from smallholder farmers *vs.* selecting which largeholder farmers to buy from
- Strategy decreased company profits, but also may explain the large impacts
- Conclusion: case study provides clues as to why market integration of large swathes of the rural population, and for many of the agricultural products they produce, is challenging – despite its potential

Discussion: a case study

- An alternative lens: cost-effectiveness in a program evaluation
 - if a market for quality maize that smallholders could access is not financially viable, one could consider using subsidy money to generate such a market
- Various multifaceted programs to help the very poor (Bandiera et al, 2017, Banerjee et al 2015)
 - effects on profits we document suggest market access programs is at least a candidate worth investigating more closely

THANK YOU!

THANK YOU!

